China unveils 1,000 km/h maglev train in vacuum tube
RAILWAYS & METRO RAIL

China unveils 1,000 km/h maglev train in vacuum tube

China has made a major leap in high-speed transportation with the successful testing of a magnetic levitation (maglev) train within a vacuum tube. Developed by the China Aerospace Science and Industry Corporation (CASIC), the train has the potential to reach speeds of 4,000 km/h, surpassing even aircraft speeds. This breakthrough aims to push the limits of rail transport, promising faster travel times and environmental benefits.

In preliminary trials, the maglev train reached speeds of 623 km/h, far outperforming conventional high-speed rail systems. Using magnetic levitation, the train floats above the track, eliminating wheel friction and minimising air resistance in a low-vacuum environment. CASIC envisions this technology revolutionising domestic and international transport by dramatically reducing travel times and environmental impact.

While the potential of this technology is enormous, building the infrastructure presents significant challenges. Unlike traditional rail networks, maglev systems require specially designed low-vacuum tunnels, which are expensive and require vast amounts of land and resources. Analysts, including Professor Andrew McNaughton, highlight that both construction and operational costs for maglev systems are substantially higher than for conventional high-speed rail networks. Additionally, the magnetic propulsion system consumes large amounts of energy, raising concerns about long-term sustainability.

The feasibility of maglev trains also depends on population density and funding. In regions with sparse populations or limited infrastructure budgets, deploying such systems might not be practical.

Despite these challenges, maglev trains could offer significant environmental advantages. By slashing travel times, these trains could reduce the need for short-haul flights, which would lower carbon emissions. Associate professor Jonathan Couldrick estimates that shifting from regional air travel to maglev trains could reduce carbon emissions by 3-4% in some countries.

Moreover, maglev technology has the potential to reshape urban development. Faster commute times could encourage people to live farther from city centres, promoting sustainable urbanisation. If powered by renewable energy, maglev trains could further enhance environmental benefits, offering a green alternative to conventional transportation systems.

With the potential to reach speeds of up to 4,000 km/h, this technology could fundamentally change global transportation, facilitating faster travel between cities and countries. However, the success of the project will depend on overcoming infrastructure, energy, and cost challenges.

If China manages to scale up and implement this maglev technology effectively, it could set a new benchmark for high-speed rail and demonstrate the future potential of advanced magnetic levitation in transportation systems worldwide.

(ecoticias)

China has made a major leap in high-speed transportation with the successful testing of a magnetic levitation (maglev) train within a vacuum tube. Developed by the China Aerospace Science and Industry Corporation (CASIC), the train has the potential to reach speeds of 4,000 km/h, surpassing even aircraft speeds. This breakthrough aims to push the limits of rail transport, promising faster travel times and environmental benefits. In preliminary trials, the maglev train reached speeds of 623 km/h, far outperforming conventional high-speed rail systems. Using magnetic levitation, the train floats above the track, eliminating wheel friction and minimising air resistance in a low-vacuum environment. CASIC envisions this technology revolutionising domestic and international transport by dramatically reducing travel times and environmental impact. While the potential of this technology is enormous, building the infrastructure presents significant challenges. Unlike traditional rail networks, maglev systems require specially designed low-vacuum tunnels, which are expensive and require vast amounts of land and resources. Analysts, including Professor Andrew McNaughton, highlight that both construction and operational costs for maglev systems are substantially higher than for conventional high-speed rail networks. Additionally, the magnetic propulsion system consumes large amounts of energy, raising concerns about long-term sustainability. The feasibility of maglev trains also depends on population density and funding. In regions with sparse populations or limited infrastructure budgets, deploying such systems might not be practical. Despite these challenges, maglev trains could offer significant environmental advantages. By slashing travel times, these trains could reduce the need for short-haul flights, which would lower carbon emissions. Associate professor Jonathan Couldrick estimates that shifting from regional air travel to maglev trains could reduce carbon emissions by 3-4% in some countries. Moreover, maglev technology has the potential to reshape urban development. Faster commute times could encourage people to live farther from city centres, promoting sustainable urbanisation. If powered by renewable energy, maglev trains could further enhance environmental benefits, offering a green alternative to conventional transportation systems. With the potential to reach speeds of up to 4,000 km/h, this technology could fundamentally change global transportation, facilitating faster travel between cities and countries. However, the success of the project will depend on overcoming infrastructure, energy, and cost challenges. If China manages to scale up and implement this maglev technology effectively, it could set a new benchmark for high-speed rail and demonstrate the future potential of advanced magnetic levitation in transportation systems worldwide. (ecoticias)

Next Story
Infrastructure Energy

Vedanta Aluminium Uses 1.57 bn Units of Green Energy in FY25

Vedanta Aluminium, India’s largest aluminium producer, recently reported consumption of 1.57 billion units of renewable energy in FY25, marking a significant milestone in its 2030 decarbonisation roadmap. The company also achieved an 8.96 per cent reduction in greenhouse gas (GHG) emissions intensity compared to FY21, reinforcing its leadership in India’s low-carbon manufacturing transition. During FY25, Vedanta Aluminium expanded its renewable energy portfolio through long-term power purchase agreements, strengthening its strategy to source nearly 1,500 MW of renewable power over the lon..

Next Story
Real Estate

Oberoi Group to Develop Luxury Resort at Makaibari Tea Estate

EIH Limited, the flagship company of The Oberoi Group, has announced the signing of a management agreement to develop an Oberoi luxury resort at the iconic Makaibari Tea Estate in Darjeeling. The project marks a key milestone in the Group’s long-term strategy of creating distinctive hospitality experiences in rare and environmentally significant locations. Established in 1859, Makaibari is one of the world’s oldest tea estates and is globally recognised for its Himalayan landscape, primary forests and exceptional biodiversity. Spread across 1,236 acres, the estate houses one of the world..

Next Story
Real Estate

GHV Infra Secures Rs 1.09 Bn EPC Order in Jamshedpur

GHV Infra Projects Ltd, a fast-growing EPC company in India’s infrastructure and construction sector, has recently secured a Rs 1.09 billion work order in Jamshedpur, Jharkhand. Awarded by a reputed group entity, the contract covers end-to-end civil construction, mechanical, electrical and plumbing (MEP) systems, along with high-quality finishing works for a large building development. The project will be executed over a 30-month period, with defined benchmarks for quality, safety and timely delivery. The order strengthens GHV Infra’s footprint in Jamshedpur, a key industrial hub known fo..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Open In App