Automatic sustainable construction technology
Technology

Automatic sustainable construction technology

The faculty and alumni of Indian Institute of Technology (IIT) Madras have developed India's first 3D printing construction technology. Start-up firm Tvasta Manufacturing Solutions and the Civil Engineering Department of IIT Madras have established a unique 3D printing laboratory to formulate technological solutions for construction and take this technology to the mass market. Manu Santhanam, Professor, Department of Civil Engineering, IIT Madras, shares more on the technology.

Sustainable construction
‘Green’ or ‘sustainable’ construction means the lower use of resources, coupled with long service life of the structure. As 3D printing optimises the use of concrete only in locations where it is necessary, resource consumption is low. Further, as the concrete is designed with high-performance materials to achieve a unique combination of characteristics, it has good durability and, so, longer service life. Additionally, suitable cement replacement materials are also used in the mix design to achieve printability-related properties. This reduces the carbon footprint of the structures being built. 

3D printing can also play a major role in reducing the lifecycle energy costs of a built structure. It can also help build structures that have natural insulation—for example, by having hollow walls or multiple materials within the same wall—thereby reducing the structure’s energy needs during its lifecycle.

Concrete architecture
3D printing technology uses precise deposition of raw material (concrete or any other) for building large-scale structures in a layer-by-layer manner. This deposition process and the movement of the 3D printer are all controlled using a centralised controller that receives instructions based on the digital file that has been inputted into it. With this digital technology, there are no limitations based on the skillset of the person involved, which usually constrains conventional construction processes.

The technology can be easily used to build complicated architectural elements and structures with curved and organic shapes that are difficult to build using conventional techniques. The development of new technologies in concrete materials, such as ultra high-performance concrete (UHPC), can aid in making the 3D printing of complex architectural shapes easier. The complete lack of requirement of formwork and moulds for building structures can also make it easier to build complex structures with less difficulty. Single-use moulds or formworks are expensive and unsustainable. As 3D printing does not distinguish between the number of structures that need to be built and operates with the concept of mass customisation, building unique architectural structures becomes an easier task.

- SERAPHINA D’SOUZA

The faculty and alumni of Indian Institute of Technology (IIT) Madras have developed India's first 3D printing construction technology. Start-up firm Tvasta Manufacturing Solutions and the Civil Engineering Department of IIT Madras have established a unique 3D printing laboratory to formulate technological solutions for construction and take this technology to the mass market. Manu Santhanam, Professor, Department of Civil Engineering, IIT Madras, shares more on the technology. Sustainable construction ‘Green’ or ‘sustainable’ construction means the lower use of resources, coupled with long service life of the structure. As 3D printing optimises the use of concrete only in locations where it is necessary, resource consumption is low. Further, as the concrete is designed with high-performance materials to achieve a unique combination of characteristics, it has good durability and, so, longer service life. Additionally, suitable cement replacement materials are also used in the mix design to achieve printability-related properties. This reduces the carbon footprint of the structures being built.  3D printing can also play a major role in reducing the lifecycle energy costs of a built structure. It can also help build structures that have natural insulation—for example, by having hollow walls or multiple materials within the same wall—thereby reducing the structure’s energy needs during its lifecycle. Concrete architecture 3D printing technology uses precise deposition of raw material (concrete or any other) for building large-scale structures in a layer-by-layer manner. This deposition process and the movement of the 3D printer are all controlled using a centralised controller that receives instructions based on the digital file that has been inputted into it. With this digital technology, there are no limitations based on the skillset of the person involved, which usually constrains conventional construction processes.The technology can be easily used to build complicated architectural elements and structures with curved and organic shapes that are difficult to build using conventional techniques. The development of new technologies in concrete materials, such as ultra high-performance concrete (UHPC), can aid in making the 3D printing of complex architectural shapes easier. The complete lack of requirement of formwork and moulds for building structures can also make it easier to build complex structures with less difficulty. Single-use moulds or formworks are expensive and unsustainable. As 3D printing does not distinguish between the number of structures that need to be built and operates with the concept of mass customisation, building unique architectural structures becomes an easier task. - SERAPHINA D’SOUZA

Next Story
Infrastructure Energy

NTPC Signs $11.5 Billion Clean Energy Deals in Chhattisgarh

Juniper Green Energy has successfully commissioned a 100-MW solar power project aimed at supplying electricity to Bhutan, marking a significant milestone in regional energy integration. According to the company's statement, the project facilitates a crucial cross-border agreement allowing Bhutan to receive 50% of the power generated during the winter months. This arrangement permits Bhutan to directly import power from an Indian generator under an established bilateral trade framework. Located in Rajasthan, the solar project contributes a total generation capacity of 100 MW. Highlighting the..

Next Story
Infrastructure Energy

Juniper Green Commissions 100-MW Solar Project for Bhutan

The New Delhi Municipal Council (NDMC) held its first council meeting since the Delhi Assembly polls focusing on a comprehensive Summer Action Plan aimed at achieving 100% solar energy adoption by 2026. The meeting, led by MP Bansuri Swaraj, began with the swearing-in of three new NDMC members — Delhi Minister and New Delhi MLA Parvesh Sahib Singh, Delhi Cantt. MLA Virender Singh Kadian, and Ravi Kumar Arora, Additional Secretary of the Ministry of Housing and Urban Affairs. Solar Energy Push NDMC Vice Chairman Kuljeet Singh Chahal announced the civic body's ambitious solar energy plans, ..

Next Story
Infrastructure Energy

NDMC Pushes for 100% Solar Energy by 2026

Mumbai-based energy storage startup AmpereHour Energy has raised $5 million from Avaana Capital, with participation from UC Impower and other angel investors. Founded in 2017 by IIT Bombay alumni, AmpereHour Energy focuses on building AI/ML-enabled Energy Storage Systems ranging from kW/kWh scale systems for Mini-grids to MW/MWh scale systems compatible with solar PV and wind plants. The systems are designed to be plug-and-play, integrated with the company’s proprietary Energy Management platform, Elina. The fresh capital will be directed towards expanding manufacturing and software capabi..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?