Radiative Paint reduces electricity consumption for cooling buildings
Paint

Radiative Paint reduces electricity consumption for cooling buildings

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days.

Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management.

At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give.

The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight.

The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion.

?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research.

The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days. Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management. At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give. The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight. The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion. ?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research. The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

Next Story
Products

Mulroom Revolutionizes India’s Furniture Market

India's furniture market, a rapidly growing industry, has long grappled with inefficient supply chains, high costs, and limited customization options. Enter Mulroom, a tech-driven startup founded by Parikshit Guhabiswas, which aims to revolutionize the sector through a direct-to-consumer (DTC) model that empowers craftspeople and small-scale manufacturers while promoting sustainability. Mulroom tackles the industry's age-old problems by eliminating middlemen and implementing a lean, technology-enabled supply chain that cuts down waste and reduces costs. By leveraging AI-powered demand forecas..

Next Story
Infrastructure Urban

Build Capital Exits Second SRA Project with 19.76% IRR

Build Capital, an early-stage real estate financier, has successfully exited its investment in a Slum Rehabilitation Authority (SRA) project near Bandra-Kurla Complex (BKC), Mumbai. This marks another successful exit for Build Capital this year, highlighting its focus on delivering superior stakeholder value through structured real estate financing. Build Capital partnered with the developer during the early stages of the project, which had faced significant delays. Its investment facilitated the completion of rehabilitation works and the conversion of scheme parameters to DCPR 2034, enhancin..

Next Story
Infrastructure Urban

Chandak Group Celebrates Women’s Identity

Chandak Group marked this Women’s Day with a powerful and heartfelt gesture aimed at celebrating the individuality and strength of women. Instead of conventional celebrations, the real estate brand launched a meaningful campaign to honor the women who have made Chandak homes their own. The initiative offered every woman homebuyer a unique, personalized memento—a beautifully engraved, sustainable keyholder featuring her name. This thoughtful token serves not only as a keepsake but also as a recognition of her journey, achievements, and rightful space within the home. The campaign’s emot..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?