Radiative Paint reduces electricity consumption for cooling buildings
Paint

Radiative Paint reduces electricity consumption for cooling buildings

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days.

Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management.

At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give.

The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight.

The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion.

?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research.

The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days. Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management. At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give. The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight. The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion. ?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research. The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

Next Story
Resources

Master Builders Solutions Forges Path into India Market with MBT-Construction Chemicals

Master Builders Solutions, a global leader in innovative concrete admixtures and solutions for the construction industry, announces its strategic expansion into the dynamic Indian market. Leveraging its expertise and advanced solutions, Master Builders Solutions aims to address the growing demand for sustainable, high-performance construction materials across various sectors in India. The move into India represents a significant milestone for Master Builders Solutions, aligning with its commitment to delivering cutting-edge solutions worldwide. With a rapidly evolving construction landscape in..

Next Story
Resources

TrucksUp collaborates with AU Small Finance Bank to empower aspiring buyers and small fleet owners

TrucksUp has announced a strategic partnership with AU Small Finance Bank Ltd to offer economic, easy and hassle-free financing solutions for used trucks focusing on driver and transport business community. This partnership tactically aims to support small fleet owners in India by providing low EMI loans at competitive interest rates. Their target audience can also benefit from refinancing options on existing trucks and avail of top-up loans to meet their financial needs. This is making the access to capital needs for truck drivers’ community easy to grow and scale their business. This colla..

Next Story
Resources

Build Capital to Invest Rs 1.5 billion in Navi Mumbai’s RE Market in 2025

Build Capital, an innovative early-stage real estate fund, has completed its maiden investment in the Navi Mumbai market. This investment in Satyam Group’s project is part of Build’s strategy to become a preferred partner in early – stage real estate financing in Mumbai Metropolitan Region (MMR).Build Capital has further announced that it plans to invest close to Rs 1.5 billion (bn) in the Navi Mumbai market out of its total target investments of Rs. 4 bn for the year 2025. Kuldeep Jain, CEO and Co-Founder, Build Capital said, “We are plugging the existing gaps of early-stage financing..

Hi There!

"Now get regular updates from CW Magazine on WhatsApp!

Join the CW WhatsApp channel for the latest news, industry events, expert insights, and project updates from the construction and infrastructure industry.

Click the link below to join"

+91 81086 03000