Radiative Paint reduces electricity consumption for cooling buildings
Paint

Radiative Paint reduces electricity consumption for cooling buildings

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days.

Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management.

At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give.

The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight.

The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion.

?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research.

The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

A new affordable, eco-friendly radiative cooling paint, specifically engineered to effectively cool structures like buildings, pavers, and tiles in hot weather conditions can diminish electricity consumption and offer essential relief during sweltering summer days. Cooling technologies are an integral part of human life due to the increased global warming and urban heat island effects. Active cooling devices such as air-conditioners (AC), electric fans, and refrigerators consume enormous electrical energy. Along with this vast energy demand, active cooling devices also emit a large proportion of greenhouse gases, leading to an increase in the earth's surface temperature. To circumvent these challenges, radiative cooling technology has been developed that provides cool surfaces by emitting thermal radiation directly to the cold universe (around 3K) through the atmospheric transmission window (8 - 13 ?m) without electricity consumption. As a result, passive daytime radiative cooling (PDRC) has drawn much interest recently for many applications such as pavers, tiles, building and automobile cooling, solar cell, and personal thermal management. At the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR) in Bengaluru, researchers, led by Professor Bivas Saha in collaboration with Prasanna Das, Sourav Rudra, Krishna Chand Maurya, have introduced a groundbreaking radiative cooling paint. Developed from a novel MgO-PVDF polymer nanocomposite, this low-cost, solution-processed paint demonstrates significant cooling capabilities with an high solar reflectivity and infrared thermal emissivity. The experimental findings by scientists of JNCASR, an autonomous institute of the Department of Science and Technology, have shown that the surface temperature of a treated paver decreases by approximately 10?C under intense sunlight-- almost double of the reduction that conventional white paints give. The researchers developed polymer nanocomposite paint by using a simple solution-processed technique. They used ultra-white and ultra-emissive magnesium oxide (MgO)-polyvinylidene fluoride (PVDF) nano-composite prepared from materials that are earth abundant, cheap, non-toxic and non-harmful. Initially, polymer powders were transformed into a solution using solvent and then, dielectric nanoparticles are dispersed inside the polymer matrix. After preparation, different spectroscopic techniques were used to characterise the optical properties of the prepared polymer nanocomposite paint. By measuring the temperature of the paint using a thermocouple, excellent cooling performance was demonstrated under hot sunlight. The optimised MgO-PVDF with a dielectric nanoparticles resulted in large solar reflectance of 96.3% and a record high thermal emission of 98.5% due to Mg?O bond vibrations, and other stretching/bonding vibrations from the polymer. The nanocomposite paint exhibited water-resistant hydrophobic properties and can be easily coated on pavers, wood sticks and so on with high uniformity and good adhesion. ?Our innovative research has led to the development of a cost-effective and environmentally sustainable paint capable of reducing surface temperatures (including buildings, tiles, pavers, etc.) by over 10?C during hot summer days. With the straightforward application of this paint, we envision it offering significant respite during scorching summer days, benefiting both urban and rural areas alike.? said Prof Bivas Saha, Associate Professor at the Jawaharlal Nehru Centre for Advanced Scientific Research. The work published in Advanced Material Technologies, a Wiley publication, can motivate industries to implement the radiative cooling paint for building cooling applications. These findings indicate that the adoption of MgO-PVDF cooling paint in construction can significantly curtail the reliance on air conditioning, thus contributing to a reduction in associated environmental impacts.

Next Story
Infrastructure Urban

India Warehousing Show Concludes with Record Participation

The 14th edition of the India Warehousing Show (IWS) 2025 wrapped up successfully at Yashobhoomi (IICC), Dwarka, drawing over 300 exhibitors from 15 countries and welcoming more than 15,000 visitors from India and abroad. As the country’s leading platform for warehousing and supply-chain excellence, the event highlighted cutting-edge technologies, sustainable solutions, and new product innovations that are reshaping the logistics sector.The show was inaugurated by Shri Pankaj Kumar, Joint Secretary – Logistics, DPIIT, Ministry of Commerce and Industry, Government of India, who delivered a ..

Next Story
Infrastructure Urban

Hindustan Zinc Launches Inclusive Language Guide to Promote Workplace Diversity

Udaipur, 3rd July 2025: Hindustan Zinc Limited (NSE: HINDZINC), the world’s largest integrated zinc producer, has made a significant stride towards enhancing workplace equity with the launch of its Guidebook to Inclusive Language. This move underscores the company’s strong commitment to creating a respectful, diverse, and inclusive work environment. The guidebook serves as a framework to encourage inclusive communication, promote sensitivity towards various communities, and support equitable practices throughout the organization.The Guidebook was launched on Hindustan Zinc’s homegrown #Z..

Next Story
Infrastructure Urban

BharatBenz Launches New Mining Range to Support India’s Infra Growth

Chennai, India: The Indian construction and mining equipment sector is set to grow significantly, projected to increase from $16 billion to $45 billion by 2030. To support this expansion, Daimler India Commercial Vehicles (DICV), a wholly owned subsidiary of Daimler Truck AG, has launched its all-new BharatBenz Construction and Mining range. This range includes the HX and Torqshift series models, designed to meet the critical demand for reliable, high-performance vehicles as large contractors modernise their fleets and invest in owned assets.The HX and Torqshift series have undergone rigorous ..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?