Seismic Isolators : Isolating the catastrophe
Technology

Seismic Isolators : Isolating the catastrophe

Though 81 percent of the strongest earthquakes on earth occur along the circum-Pacific seismic belt, which is often referred to as the "Ring of Fire." The Alpine-Himalayan seismic belt extending up to Andaman-Nicobar island region, is also known to be one of the seismically active belts of the world.

Due to a surge in development activities brought on by urbanisation, economic expansion, and the globalisation of India's economy, the risk of earthquakes has increased. After an earthquake, severe financial losses that cause the local or regional economy to collapse could have long-term negative effects on the entire nation. In the event that a megacity like Delhi or Mumbai is affected by an earthquake, this effect would be amplified even further.

All the elements of the built environment including tall buildings have to constantly remain in the shadow of tremors which can cause havoc, in such cases use of seismic isolators can reduce the intensity of damage caused by an earthquake and minimise the loss of life and property.

Seismic isolation is the process of installing isolation devices beneath a building to shield it from major earthquakes. Japan has used it to good effect. The number of seismic isolated buildings exceeds 4000. The National Museum of Western Art in Tokyo was built in 1958 by Shimizu Corporation and was originally designed by Le Corbusier, a well-known architect of the 20th century. In 1998, the seismic isolation retrofit was used to renovate this museum . The seismic isolation retrofit was first implemented in Japan at the National Museum of Western Art in Tokyo.

Since the 1980s, the seismic isolation method has been studied and used in buildings. The columns and beams of the conventional earthquake-resistant design are constructed to be sturdy and adaptable enough to withstand earthquake motions. This method is used to design and construct the vast majority of buildings. When a typical building experiences a powerful earthquake, it may be able to avert collapse and save its occupants' lives. However, the building's furnishings and equipment will almost certainly fall, and the building's structural components may sustain significant damage.

Under the building, isolation devices are installed to separate the structure from earthquake motions. The building's shaking can be significantly reduced with seismic isolation. Laminate rubber bearings have made it possible to use the seismic isolation method.

In order to lessen the bearings' deformation in the event of an earthquake, the seismic isolation method requires the installation of energy-absorbing devices alongside laminated rubber bearings. Layers of rubber and steel make up a lead-rubber bearing, which has a solid lead plug in the center. The lead plug is a device for absorbing energy. Special rubbers are used in high-damping rubber bearings to significantly dampen motion and dissipate energy.

Across India the feasibility of using seismic isolators needs to be studied carefully. A lot of buildings can use this method to shield themselves from the severe impact of earthquakes. These retrofits should also be a part of the smart cities mission to make existing and upcoming cities smarter.

Though 81 percent of the strongest earthquakes on earth occur along the circum-Pacific seismic belt, which is often referred to as the Ring of Fire. The Alpine-Himalayan seismic belt extending up to Andaman-Nicobar island region, is also known to be one of the seismically active belts of the world. Due to a surge in development activities brought on by urbanisation, economic expansion, and the globalisation of India's economy, the risk of earthquakes has increased. After an earthquake, severe financial losses that cause the local or regional economy to collapse could have long-term negative effects on the entire nation. In the event that a megacity like Delhi or Mumbai is affected by an earthquake, this effect would be amplified even further. All the elements of the built environment including tall buildings have to constantly remain in the shadow of tremors which can cause havoc, in such cases use of seismic isolators can reduce the intensity of damage caused by an earthquake and minimise the loss of life and property. Seismic isolation is the process of installing isolation devices beneath a building to shield it from major earthquakes. Japan has used it to good effect. The number of seismic isolated buildings exceeds 4000. The National Museum of Western Art in Tokyo was built in 1958 by Shimizu Corporation and was originally designed by Le Corbusier, a well-known architect of the 20th century. In 1998, the seismic isolation retrofit was used to renovate this museum . The seismic isolation retrofit was first implemented in Japan at the National Museum of Western Art in Tokyo. Since the 1980s, the seismic isolation method has been studied and used in buildings. The columns and beams of the conventional earthquake-resistant design are constructed to be sturdy and adaptable enough to withstand earthquake motions. This method is used to design and construct the vast majority of buildings. When a typical building experiences a powerful earthquake, it may be able to avert collapse and save its occupants' lives. However, the building's furnishings and equipment will almost certainly fall, and the building's structural components may sustain significant damage. Under the building, isolation devices are installed to separate the structure from earthquake motions. The building's shaking can be significantly reduced with seismic isolation. Laminate rubber bearings have made it possible to use the seismic isolation method. In order to lessen the bearings' deformation in the event of an earthquake, the seismic isolation method requires the installation of energy-absorbing devices alongside laminated rubber bearings. Layers of rubber and steel make up a lead-rubber bearing, which has a solid lead plug in the center. The lead plug is a device for absorbing energy. Special rubbers are used in high-damping rubber bearings to significantly dampen motion and dissipate energy. Across India the feasibility of using seismic isolators needs to be studied carefully. A lot of buildings can use this method to shield themselves from the severe impact of earthquakes. These retrofits should also be a part of the smart cities mission to make existing and upcoming cities smarter.

Next Story
Infrastructure Urban

Trump-Backed $100 Billion Stargate to Use Solar Power for AI Infra

A $100 billion joint venture, endorsed by former President Donald Trump, is set to advance artificial intelligence in the U.S. and will rely partly on renewable energy sources such as solar power and batteries, favored by his climate-focused predecessor.The Stargate venture, announced on January 23, 2025, involves SoftBank Group Corp., OpenAI, and Oracle Corp. These companies will invest $100 billion to establish infrastructure in the U.S., including data centres for OpenAI. Although executives highlighted a potential $500 billion expansion, they did not specify energy sources for the project...

Next Story
Building Material

JK Cement Acquires Majority Stake in Saifco Cement to Expand in J&K

JK Cement has made a significant move in its growth strategy by acquiring a 60% equity stake in Saifco Cement, a cement manufacturer based in Srinagar, Jammu and Kashmir. The acquisition, valued at approximately Rs 1.74 billion, was approved during a board meeting on January 25, 2025.Located in Khunmoh, Srinagar, Saifco's integrated manufacturing unit, which includes both clinker and grinding capacities, aligns with JK Cement's expansion plans. Saifco has an annual turnover of around Rs 860 million, and this acquisition not only strengthens JK Cement's presence in the region but also offers a ..

Next Story
Infrastructure Transport

Etihad Unveils Train Connecting Dubai and Abu Dhabi in 30 Minutes

Etihad Rail has announced the launch of a new high-speed passenger train service between Dubai and Abu Dhabi, set to reduce travel time to just 30 minutes. The trains will travel at speeds of up to 350 km/h, significantly improving connectivity between the two emirates.The announcement was made during an official ceremony at Al Faya Depot, with officials from the Dubai Media Office (DMO) and Abu Dhabi Media Office (ADMO) sharing the news on social media platform X.The high-speed rail route will pass through major destinations and tourist attractions, providing a fast, efficient travel experien..

Hi There!

"Now get regular updates from CW Magazine on WhatsApp!

Join the CW WhatsApp channel for the latest news, industry events, expert insights, and project updates from the construction and infrastructure industry.

Click the link below to join"

+91 81086 03000