IIT Mandi develops AI-based structural health monitoring
Technology

IIT Mandi develops AI-based structural health monitoring

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.

The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.

Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.

The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.

The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.

One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.

In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.

This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Next Story
Real Estate

Thermocool Home Appliances Invests Rs 300 million in New Ghaziabad Plant

Thermocool Home Appliances, a leading UP-based home and kitchen appliances brand, has inaugurated a new manufacturing facility in Ghaziabad, reinforcing its growth, innovation, and sustainability commitments.Spanning 25,000 square meters, the plant features advanced automation, energy-efficient systems, and employee welfare facilities. With an initial production capacity of 1,800-2,200 units/day, the company plans to scale up to 3,000-4,000 units/day within six months and expand the facility by 50 percent over the next two years.The Rs 300 million investment will cater to rising demand across ..

Next Story
Building Material

Parallel debuts fluted glass collection, redefining luxury interiors

Parallel has launched an exquisite collection of tinted, extra-clear, and designer fluted glass, introducing a new dimension to contemporary interiors.Fluted glass, known for its vertical striations, diffuses light while sculpting silhouettes with a refined aesthetic. Parallel’s range includes smoky tinted variants, pristine extra-clear options, and metallic-infused designs, ideal for partitions, doors, and wall treatments that balance exclusivity with openness.Emphasising sensory design, the collection enhances spaces by creating dynamic light interactions. Crafted for luxury residences, ho..

Next Story
Building Material

Nivasa unveils luxury lighting collection blending artistry and innovation

Nivasa, a leader in luxury furniture design, has launched an exquisite lighting collection inspired by nature, combining sculptural aesthetics with masterful craftsmanship.Crafted from premium 304-grade stainless steel, each piece showcases a refined interplay of organic and sleek forms, offering a range of finishes for bespoke customization. Designed for grand foyers, intimate spaces, and sophisticated interiors, the collection merges contemporary finesse with global design standards.Collection highlights include:Circular Drummer’s Chandelier – A geometric yet fluid design in a light gold..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?