+
IIT Mandi develops AI-based structural health monitoring
Technology

IIT Mandi develops AI-based structural health monitoring

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.

The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.

Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.

The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.

The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.

One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.

In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.

This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Next Story
Infrastructure Energy

ACME Solar Places Over 3.1 GWh Battery Storage Order

ACME Solar has placed an order exceeding 3.1 GWh of Battery Energy Storage Systems (BESS), marking one of the largest such procurements in India to date. The order has been placed with leading global energy storage solution providers, including Zhejiang Narada and Trina Energy, both known for their high-efficiency and scalable battery technologies.The BESS units will be deployed across ACME Solar’s portfolio of renewable energy projects, including Firm and Dispatchable Renewable Energy (FDRE) and battery-linked developments, which are scheduled for commissioning over the next 12–18 months ..

Next Story
Infrastructure Energy

SMIORE Receives Prestigious Seven Star Rating Award from Ministry of Mines

The Sandur Manganese & Iron Ores (SMIORE) has been conferred with the prestigious Seven Star Rating Award by the Ministry of Mines and the Indian Bureau of Mines (IBM) for its performance in the 2023–24 assessment year. The award recognises excellence in sustainable and green mining practices.The felicitation took place on 7 July 2025 at the Rajasthan International Centre, Jaipur, during a national event honouring India's Five Star and Seven Star Rated Mines. The Seven Star Award was presented by Bhajanlal Sharma, Chief Minister of Rajasthan, in the presence of G Kishan Reddy, Union Mini..

Next Story
Infrastructure Urban

Snowman Logistics Adds New Facility in Kundli, Expands Capacity

Snowman Logistics, a leading temperature-controlled logistics service provider, has commenced operations at a new warehousing facility in Kundli, located in the Delhi NCR region. The facility, taken on long-term lease, adds 3,576 pallet positions to the company's overall capacity, which now stands at 154,330 pallet positions across 44 warehouses in 21 cities.In addition to its warehousing infrastructure, Snowman operates a fleet comprising 296 company-owned and over 325 leased refrigerated vehicles, ensuring comprehensive cold chain connectivity across the country.The Kundli facility is strate..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?