IIT Mandi develops AI-based structural health monitoring
Technology

IIT Mandi develops AI-based structural health monitoring

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.

The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.

Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.

The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.

The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.

One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.

In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.

This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Researchers at the Indian Institute of Technology (IIT) in Mandi, in collaboration with France's National Institute for Research in Digital Science and Technology (INRIA), have made significant strides in the field of structural health monitoring (SHM) by harnessing the power of artificial intelligence (AI) and advanced signal processing techniques. Their innovative approach utilizes AI algorithms to accurately predict the structural health of bridges and other critical infrastructure, marking a substantial departure from traditional, manual inspection methods.The application of these AI-based algorithms extends well beyond bridges and can be adapted for assessing the health of various structures, including ropeways, buildings, aerospace structures, transmission towers, and other components of essential infrastructure that require regular health assessments and protective measures.Structures like bridges are subjected to natural ageing processes due to environmental factors such as temperature fluctuations, exposure to water and air, and the added stress of heavy road traffic. Traditionally, assessing the condition of bridges has heavily relied on visual inspections, which are often deemed inadequate by experts in the field. Visual inspections are subjective, time-consuming, and involve manual analysis of numerous photographs. As such, they fall short of detecting all structural issues, which can be detrimental to ensuring the safety and reliability of these vital structures.The recent breakthrough achieved by the researchers at IIT Mandi and INRIA leverages recent advances in instrumentation, data analysis, and AI tools like deep learning to enhance structural health monitoring. These technologies facilitate the detection, measurement, understanding, and prediction of defects in structures over time. Consequently, they enable more effective planning for renovation or repair work, ultimately reducing maintenance costs and extending the lifespan and availability of bridges and other infrastructure.The team at IIT Mandi has developed a Deep Learning-based SHM approach that relies on AI algorithms to identify and isolate structural damages by analyzing recorded ambient dynamic responses without requiring human intervention. This innovative method is based on data-driven techniques such as Machine Learning, AI, and Bayesian statistical inference, which estimate a bridge's health and predict its remaining usable life. This outcome has the potential to reduce risks to infrastructure, particularly under operational and adverse loading conditions.One critical aspect considered in the AI-based SHM approach is the impact of temperature fluctuations on a bridge's dynamic traits, especially in structures like prestressed concrete and cable-stayed bridges. The algorithm developed by IIT Mandi was rigorously tested on a real bridge located in a cold region with extreme annual and daily temperature swings. The results demonstrated its effectiveness in identifying structural damage caused by various factors, including temperature fluctuations.In another related study, the researchers employed advanced filtering techniques to assess the condition of different structural components without the need for direct measurement of their connections. This technique allows for the separate assessment of each component's health, aiding in the evaluation of overall structural integrity. Through computer simulations and extensive testing, the researchers verified the method's robust performance, even in the presence of background noise and varying levels of damage severity.This groundbreaking research not only advances the field of structural health monitoring but also paves the way for safer, more efficient, and cost-effective maintenance and repair of critical infrastructure, benefiting society as a whole.

Next Story
Real Estate

MAN Industries Monetises Navi Mumbai Land for TRs 7.20 Bn

In a strategic move to unlock value from its non-core assets, Merino Shelters Pvt Ltd (MSPL), a wholly owned subsidiary of MAN Industries (India), has entered into a development agreement with Paradise Green-Spaces LLP to monetize a prime land parcel in Nerul, Navi Mumbai, valued at approximately Rs 7.20 to 7.70 billion.The transaction, finalized on March 31, 2025, grants development rights for a approximately 6-acre plot located directly opposite the D.Y. Patil Stadium, one of Navi Mumbai’s most prominent landmarks. The location also benefits from its proximity to the upcoming Navi Mumbai I..

Next Story
Real Estate

Maharashtra Ups Stamp Duty Rates for FY 2025–26

The Maharashtra government has announced an increase in Ready Reckoner Rates (RRR) for the financial year 2025-26, a move that is likely to influence property valuations, stamp duty, and registration charges across the state. The revised rates come into effect starting today, April 1, and mark the first revision since 2022–23.The State Registration and Stamps Department issued a notification late on March 31 confirming an average hike of 3.89 per cent across Maharashtra. These government-notified rates serve as the minimum property value benchmarks for tax calculations during transactions an..

Next Story
Infrastructure Urban

Rosatom Maps Long-Term Growth for Arctic Trade Route

At the VI International Arctic Forum: ""The Arctic – the Territory of Dialogue"", Russia’s state nuclear corporation Rosatom unveiled its long-term vision for the development of the Northern Sea Route (NSR) — a key transportation corridor linking Europe and Asia through the Arctic.During a session on the “Long-Term Development Model for the NSR,” Alexey Likhachev, Director General of Rosatom, emphasized the importance of forward-looking planning to handle rising cargo demands. He highlighted that the NSR saw a record 38 million tons of cargo in 2024, and projections suggest future tr..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?