Heatwaves and Mivan Construction
Technology

Heatwaves and Mivan Construction

The Mivan technology enables extremely rapid construction, improves durability and earthquake resistance, and reduces wall thickness and increases carpet area in high rise buildings.

The Mivan construction technology essentially comprises a highly durable aluminum formwork fabricated in the shape and layout of the building including the walls, columns, beams, and slabs. It is extremely modular and uses the same formwork for all the floors of the building. The steel reinforcement is fixed within the formwork and concrete is poured into it to make the different members of the building.


When something sounds too good to be true, it is.

As good as Mivan construction sounds, however, there are some disadvantages:

High modularity comes at the cost of extremely low flexibility. The initial cost of making the formwork is prohibitive and therefore is only suitable for skyscrapers or extremely large sized projects. But those are not its biggest disadvantages. The proverbial cake is taken by thermal insulation.
 

Mivan construction technology uses reinforced cement concrete as its only material. Since the entire building is made with concrete and steel, both being materials that offer notoriously low thermal insulation, energy efficiency of such structures is almost zero. 

What’s worse is that the entire external shell of the building is made with extremely thin concrete sections which transfer heat into the indoors very easily, given its high thermal conductivity. In fact, it’s only marginally better than sheet metal when it comes to thermal insulation.
 
Obviously then, when heatwaves occur, homes in such buildings will be rather similar to the depths of hell, which are constantly on fire…apparently. However, the problem is only made worse once you consider how we counteract this trait of Mivan construction.

Considering that people residing in such tall buildings would normally have access to air conditioning, the switch is turned on without caution, triggering a Catch-22: the hotter it gets, the more air conditioning we’d need, triggering an increased consumption of electricity, which would cause higher carbon emissions and global warming. 

Further, a warmer planet will cause the onset of longer, and more frequent heatwaves, which would then further accelerate global warming and climate change because, of course, we will continue to crank up our ACs. All of this just because someone wanted to make a little extra money through a rather ill-advised construction technique.

  


The bigger picture


The built environment is already responsible for 45 per cent of global carbon emissions. Almost 80 per cent of those emissions occur because we need to heat and cool our buildings, which results in harmful CFCs and GHGs being released into the air. With Mivan construction, we not only end up needing higher heating and cooling, but we also increase the amount of cement, steel and concrete needed to make our buildings.

This trend would only cause a tremendous increase in the carbon footprint of the built environment. But most importantly, the planet would get so hot, worker productivity, human health and food production would dwindle exponentially.
 
It is time for you, as a homebuyer, to educate yourselves and ask what materials and technologies have been used. Ask your builders for carbon-negative and thermally insulating materials like Agrocrete®. We owe it to ourselves and the next generations

The Mivan technology enables extremely rapid construction, improves durability and earthquake resistance, and reduces wall thickness and increases carpet area in high rise buildings.The Mivan construction technology essentially comprises a highly durable aluminum formwork fabricated in the shape and layout of the building including the walls, columns, beams, and slabs. It is extremely modular and uses the same formwork for all the floors of the building. The steel reinforcement is fixed within the formwork and concrete is poured into it to make the different members of the building.When something sounds too good to be true, it is.As good as Mivan construction sounds, however, there are some disadvantages:High modularity comes at the cost of extremely low flexibility. The initial cost of making the formwork is prohibitive and therefore is only suitable for skyscrapers or extremely large sized projects. But those are not its biggest disadvantages. The proverbial cake is taken by thermal insulation. Mivan construction technology uses reinforced cement concrete as its only material. Since the entire building is made with concrete and steel, both being materials that offer notoriously low thermal insulation, energy efficiency of such structures is almost zero. What’s worse is that the entire external shell of the building is made with extremely thin concrete sections which transfer heat into the indoors very easily, given its high thermal conductivity. In fact, it’s only marginally better than sheet metal when it comes to thermal insulation. Obviously then, when heatwaves occur, homes in such buildings will be rather similar to the depths of hell, which are constantly on fire…apparently. However, the problem is only made worse once you consider how we counteract this trait of Mivan construction.Considering that people residing in such tall buildings would normally have access to air conditioning, the switch is turned on without caution, triggering a Catch-22: the hotter it gets, the more air conditioning we’d need, triggering an increased consumption of electricity, which would cause higher carbon emissions and global warming. Further, a warmer planet will cause the onset of longer, and more frequent heatwaves, which would then further accelerate global warming and climate change because, of course, we will continue to crank up our ACs. All of this just because someone wanted to make a little extra money through a rather ill-advised construction technique.  The bigger pictureThe built environment is already responsible for 45 per cent of global carbon emissions. Almost 80 per cent of those emissions occur because we need to heat and cool our buildings, which results in harmful CFCs and GHGs being released into the air. With Mivan construction, we not only end up needing higher heating and cooling, but we also increase the amount of cement, steel and concrete needed to make our buildings.This trend would only cause a tremendous increase in the carbon footprint of the built environment. But most importantly, the planet would get so hot, worker productivity, human health and food production would dwindle exponentially. It is time for you, as a homebuyer, to educate yourselves and ask what materials and technologies have been used. Ask your builders for carbon-negative and thermally insulating materials like Agrocrete®. We owe it to ourselves and the next generations

Next Story
Infrastructure Energy

KEC Secures Rs 10, 380 Mn Substation Order in Saudi Arabia

KEC International Ltd., a global infrastructure EPC major, and an RPG Group company, has secured a new order worth Rs 10,380 million for the Design, Supply and Installation of a 380 kV GIS Substation in Saudi Arabia.Vimal Kejriwal, MD & CEO, KEC International Ltd., commented, “We are delighted with the successive order wins in our T&D business. In a landmark achievement, we have secured our largest ever substation order. This prestigious order in the Middle East has widened our portfolio and strengthened our presence in the region. With this strategic win, our year-to-date or..

Next Story
Infrastructure Urban

Central Bank of India executes first fully digital SCF deal on PSB Xchange

In a major advancement for India’s banking sector, Central Bank of India (CBI) has successfully completed the country’s first fully digital supply chain finance (SCF) transaction on PSB Xchange—a unified multi-lender platform launched by PSB Alliance. PSB Xchange is designed to connect public and private sector banks, NBFCs, and fintechs with corporates and their channel partners to facilitate supply chain finance and small business loans. The transaction marks the first time a fintech-originated corporate lead has been seamlessly processed through the PSB Xchange ecosystem. The lead fl..

Next Story
Infrastructure Energy

Atlanta Electricals secures Rs 1,835 Mn transformer order from BNC Power

Atlanta Electricals Limited (“Atlanta”) has secured an order worth Rs 1,835 million from BNC Power Projects Ltd for the supply of extra high voltage (EHV) transformers and a bus reactor for its Pugal site. The contract includes a mix of 315 MVA, 400 KV and 100 MVA, 132 KV transformers along with a 400 KV bus reactor. The project scope encompasses design, manufacturing, testing, and supply to the project site. Deliveries will be sequenced following engineering and drawing approvals, offering multi-quarter execution visibility and ensuring a steady production run-rate. The order will be ex..

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Talk to us?