Solar paraboloid technology: Next frontier in renewable energy
POWER & RENEWABLE ENERGY

Solar paraboloid technology: Next frontier in renewable energy

As the world faces the urgent need to transition to renewable energy, solar paraboloid technology is emerging as a potentially transformative solution. This advanced form of concentrating solar power (CSP) promises to not only enhance the efficiency of solar energy capture but also to address the limitations that have long affected traditional photovoltaic (PV) systems. With governments and industries increasingly committed to reducing carbon emissions and achieving net-zero targets, solar paraboloids could play a crucial role in shaping the future of global energy markets.

Solar paraboloids operate using a Parabolic Trough Collector (PTC) system, which consists of long, parabolic mirrors that focus sunlight onto a receiver tube positioned at the focal line of the mirror. The concentrated solar energy heats a fluid within the receiver, which can then be used to generate electricity or provide direct heat for industrial processes. This design offers several advantages over traditional PV panels, which convert sunlight directly into electricity using semiconductors.

One of the main advantages of solar paraboloid technology is its ability to operate at higher temperatures, up to 300?C, significantly increasing thermal efficiency. Mohammad Saif, Partner at EY India, explained that the increase in operating temperature and the amount of heat collected per unit area require a smaller absorbing surface area, resulting in a significant reduction in convective and conductive heat losses, thereby boosting thermal efficiency.

While the potential of solar paraboloids is evident, the economic implications of adopting this technology on a large scale are still being discussed. Solar paraboloids are highly efficient at concentrating solar energy, meaning that more electricity can be generated from the same amount of sunlight. This efficiency could lead to lower costs per unit of electricity produced, making solar energy more competitive with traditional fossil fuels.

However, there are challenges to widespread adoption. The technology requires precise construction, specialized materials, and complex tracking systems, all of which contribute to higher upfront costs. Deepak Pandey, Founder and MD of GP Eco Solutions India Limited, highlighted both the opportunities and challenges, noting that adopting solar paraboloids on a large scale could bring significant economic benefits, including reduced costs and increased competitiveness. However, he acknowledged that challenges such as high upfront costs and infrastructure requirements remain.

As the world faces the urgent need to transition to renewable energy, solar paraboloid technology is emerging as a potentially transformative solution. This advanced form of concentrating solar power (CSP) promises to not only enhance the efficiency of solar energy capture but also to address the limitations that have long affected traditional photovoltaic (PV) systems. With governments and industries increasingly committed to reducing carbon emissions and achieving net-zero targets, solar paraboloids could play a crucial role in shaping the future of global energy markets. Solar paraboloids operate using a Parabolic Trough Collector (PTC) system, which consists of long, parabolic mirrors that focus sunlight onto a receiver tube positioned at the focal line of the mirror. The concentrated solar energy heats a fluid within the receiver, which can then be used to generate electricity or provide direct heat for industrial processes. This design offers several advantages over traditional PV panels, which convert sunlight directly into electricity using semiconductors. One of the main advantages of solar paraboloid technology is its ability to operate at higher temperatures, up to 300?C, significantly increasing thermal efficiency. Mohammad Saif, Partner at EY India, explained that the increase in operating temperature and the amount of heat collected per unit area require a smaller absorbing surface area, resulting in a significant reduction in convective and conductive heat losses, thereby boosting thermal efficiency. While the potential of solar paraboloids is evident, the economic implications of adopting this technology on a large scale are still being discussed. Solar paraboloids are highly efficient at concentrating solar energy, meaning that more electricity can be generated from the same amount of sunlight. This efficiency could lead to lower costs per unit of electricity produced, making solar energy more competitive with traditional fossil fuels. However, there are challenges to widespread adoption. The technology requires precise construction, specialized materials, and complex tracking systems, all of which contribute to higher upfront costs. Deepak Pandey, Founder and MD of GP Eco Solutions India Limited, highlighted both the opportunities and challenges, noting that adopting solar paraboloids on a large scale could bring significant economic benefits, including reduced costs and increased competitiveness. However, he acknowledged that challenges such as high upfront costs and infrastructure requirements remain.

Next Story
Equipment

Handling concrete better

Efficiently handling the transportation and placement of concrete is essential to help maintain the quality of construction, meet project timelines by minimising downtimes, and reduce costs – by 5 to 15 per cent, according to Sandeep Jain, Director, Arkade Developers. CW explores what the efficient handling of concrete entails.Select wellFirst, a word on choosing the right equipment, such as a mixer with a capacity aligned to the volume required onsite, from Vaibhav Kulkarni, Concrete Expert. “An overly large mixer will increase the idle time (and cost), while one that ..

Next Story
Real Estate

Elevated floors!

Raised access flooring, also called false flooring, is a less common interiors feature than false ceilings, but it has as many uses – if not more.A raised floor is a modular panel installed above the structural floor. The space beneath the raised flooring is typically used to accommodate utilities such as electrical cables, plumbing and HVAC systems. And so, raised flooring is usually associated with buildings with heavy cabling and precise air distribution needs, such as data centres.That said, CW interacted with designers and architects and discovered that false flooring can come in handy ..

Next Story
Infrastructure Urban

The Variation Challenge

A variation or change in scope clause is defined in construction contracts to take care of situations arising from change in the defined scope of work. Such changes may arise due to factors such as additions or deletions in the scope of work, modifications in the type, grade or specifications of materials, alterations in specifications or drawings, and acts or omissions of other contractors. Further, ineffective planning, inadequate investigations or surveys and requests from the employer or those within the project’s area of influence can contribute to changes in the scope of work. Ext..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?