Solar paraboloid technology: Next frontier in renewable energy
POWER & RENEWABLE ENERGY

Solar paraboloid technology: Next frontier in renewable energy

As the world faces the urgent need to transition to renewable energy, solar paraboloid technology is emerging as a potentially transformative solution. This advanced form of concentrating solar power (CSP) promises to not only enhance the efficiency of solar energy capture but also to address the limitations that have long affected traditional photovoltaic (PV) systems. With governments and industries increasingly committed to reducing carbon emissions and achieving net-zero targets, solar paraboloids could play a crucial role in shaping the future of global energy markets.

Solar paraboloids operate using a Parabolic Trough Collector (PTC) system, which consists of long, parabolic mirrors that focus sunlight onto a receiver tube positioned at the focal line of the mirror. The concentrated solar energy heats a fluid within the receiver, which can then be used to generate electricity or provide direct heat for industrial processes. This design offers several advantages over traditional PV panels, which convert sunlight directly into electricity using semiconductors.

One of the main advantages of solar paraboloid technology is its ability to operate at higher temperatures, up to 300?C, significantly increasing thermal efficiency. Mohammad Saif, Partner at EY India, explained that the increase in operating temperature and the amount of heat collected per unit area require a smaller absorbing surface area, resulting in a significant reduction in convective and conductive heat losses, thereby boosting thermal efficiency.

While the potential of solar paraboloids is evident, the economic implications of adopting this technology on a large scale are still being discussed. Solar paraboloids are highly efficient at concentrating solar energy, meaning that more electricity can be generated from the same amount of sunlight. This efficiency could lead to lower costs per unit of electricity produced, making solar energy more competitive with traditional fossil fuels.

However, there are challenges to widespread adoption. The technology requires precise construction, specialized materials, and complex tracking systems, all of which contribute to higher upfront costs. Deepak Pandey, Founder and MD of GP Eco Solutions India Limited, highlighted both the opportunities and challenges, noting that adopting solar paraboloids on a large scale could bring significant economic benefits, including reduced costs and increased competitiveness. However, he acknowledged that challenges such as high upfront costs and infrastructure requirements remain.

The 14th RAHSTA Expo, part of the India Construction Festival, will be held on October 9 and 10, 2024, at the Jio Convention Centre in Mumbai. For more details, visit: https://rahstaexpo.com

As the world faces the urgent need to transition to renewable energy, solar paraboloid technology is emerging as a potentially transformative solution. This advanced form of concentrating solar power (CSP) promises to not only enhance the efficiency of solar energy capture but also to address the limitations that have long affected traditional photovoltaic (PV) systems. With governments and industries increasingly committed to reducing carbon emissions and achieving net-zero targets, solar paraboloids could play a crucial role in shaping the future of global energy markets. Solar paraboloids operate using a Parabolic Trough Collector (PTC) system, which consists of long, parabolic mirrors that focus sunlight onto a receiver tube positioned at the focal line of the mirror. The concentrated solar energy heats a fluid within the receiver, which can then be used to generate electricity or provide direct heat for industrial processes. This design offers several advantages over traditional PV panels, which convert sunlight directly into electricity using semiconductors. One of the main advantages of solar paraboloid technology is its ability to operate at higher temperatures, up to 300?C, significantly increasing thermal efficiency. Mohammad Saif, Partner at EY India, explained that the increase in operating temperature and the amount of heat collected per unit area require a smaller absorbing surface area, resulting in a significant reduction in convective and conductive heat losses, thereby boosting thermal efficiency. While the potential of solar paraboloids is evident, the economic implications of adopting this technology on a large scale are still being discussed. Solar paraboloids are highly efficient at concentrating solar energy, meaning that more electricity can be generated from the same amount of sunlight. This efficiency could lead to lower costs per unit of electricity produced, making solar energy more competitive with traditional fossil fuels. However, there are challenges to widespread adoption. The technology requires precise construction, specialized materials, and complex tracking systems, all of which contribute to higher upfront costs. Deepak Pandey, Founder and MD of GP Eco Solutions India Limited, highlighted both the opportunities and challenges, noting that adopting solar paraboloids on a large scale could bring significant economic benefits, including reduced costs and increased competitiveness. However, he acknowledged that challenges such as high upfront costs and infrastructure requirements remain.

Next Story
Infrastructure Transport

Government Plans NHAI Bond Buyback

The government is reportedly planning a large-scale bond buyback program worth ?50,000 to ?70,000 crore to help reduce the debt burden of the National Highways Authority of India (NHAI). Over the past few years, NHAI has accumulated a significant amount of debt as it undertook numerous large-scale highway construction projects across the country. This bond buyback plan is intended to improve the organization’s financial health and provide relief from high-interest expenses. The bond buyback would involve repurchasing bonds from investors, allowing NHAI to reduce its outstanding liabilities. ..

Next Story
Infrastructure Transport

Bullet Train Project Receives Critical Supplies

More than 35,000 MT of rails, track construction machinery, and other essential supplies have been delivered for India's ambitious bullet train project, according to the National High-Speed Rail Corporation Limited (NHSRCL). This delivery marks a significant step forward for the Mumbai-Ahmedabad bullet train corridor, a high-priority project designed to introduce India’s first-ever high-speed rail network. The large-scale shipment includes rails from Japan and machinery that will support track laying and construction for the high-speed rail corridor. NHSRCL revealed that these supplies are c..

Next Story
Infrastructure Transport

SC clears Gaggal airport expansion project.

The Supreme Court's decision comes as a significant relief to the state government, which had been pushing for the expansion to enhance connectivity and tourism in the Kangra Valley. The project had been stalled following the Himachal Pradesh High Court’s intervention, primarily due to petitions filed by local farmers and environmental activists. They raised concerns over the acquisition of agricultural land and the potential environmental consequences of the airport’s expansion. The High Court had issued a stay on the project, pending further examination of these issues. However, with the..

Hi There!

"Now get regular updates from CW Magazine on WhatsApp!

Join the CW WhatsApp channel for the latest news, industry events, expert insights, and project updates from the construction and infrastructure industry.

Click the link below to join"

+91 81086 03000