Scientists find use of thin metals could improve energy storage capacity
POWER & RENEWABLE ENERGY

Scientists find use of thin metals could improve energy storage capacity

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Next Story
Equipment

Handling concrete better

Efficiently handling the transportation and placement of concrete is essential to help maintain the quality of construction, meet project timelines by minimising downtimes, and reduce costs – by 5 to 15 per cent, according to Sandeep Jain, Director, Arkade Developers. CW explores what the efficient handling of concrete entails.Select wellFirst, a word on choosing the right equipment, such as a mixer with a capacity aligned to the volume required onsite, from Vaibhav Kulkarni, Concrete Expert. “An overly large mixer will increase the idle time (and cost), while one that ..

Next Story
Real Estate

Elevated floors!

Raised access flooring, also called false flooring, is a less common interiors feature than false ceilings, but it has as many uses – if not more.A raised floor is a modular panel installed above the structural floor. The space beneath the raised flooring is typically used to accommodate utilities such as electrical cables, plumbing and HVAC systems. And so, raised flooring is usually associated with buildings with heavy cabling and precise air distribution needs, such as data centres.That said, CW interacted with designers and architects and discovered that false flooring can come in handy ..

Next Story
Infrastructure Urban

The Variation Challenge

A variation or change in scope clause is defined in construction contracts to take care of situations arising from change in the defined scope of work. Such changes may arise due to factors such as additions or deletions in the scope of work, modifications in the type, grade or specifications of materials, alterations in specifications or drawings, and acts or omissions of other contractors. Further, ineffective planning, inadequate investigations or surveys and requests from the employer or those within the project’s area of influence can contribute to changes in the scope of work. Ext..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?