Scientists find use of thin metals could improve energy storage capacity
POWER & RENEWABLE ENERGY

Scientists find use of thin metals could improve energy storage capacity

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Scientists at the University of Manchester have reportedly made a significant breakthrough in understanding lithium-ion storage within the thinnest battery anode, which consists of only two layers of carbon atoms. Their research, published in *Nature Communications*, reveals an unexpected ‘in-plane staging’ process occurring during lithium intercalation in bilayer graphene. This discovery may lead to advancements in energy storage technologies. The study, led by Professor Irina Grigorieva, a physicist at the University of Manchester, indicates a greater level of cooperation between the lattice of lithium ions and the crystal lattice of graphene than previously understood. The research highlights that lithium-ion batteries, which power devices such as smartphones, laptops, and electric vehicles, store energy through a process known as ion intercalation. While graphite is currently the primary anode material, the scientists replaced the traditional graphite anode with bilayer graphene to enhance performance. Their findings indicate that lithium-ion intercalation occurs in four distinct stages, with lithium ions arranging themselves in varying orders during each stage. However, the study also revealed that bilayer graphene possesses a lower lithium storage capacity than traditional graphite due to its less effective screening of interactions between positively charged lithium ions. This results in stronger repulsion between the ions, causing them to remain more distant from one another. Although this discovery suggests that bilayer graphene may not provide a higher storage capacity than bulk graphite, the unique intercalation process identified is considered crucial for future research. The team also proposes the potential use of atomically thin metals to enhance the screening effect and possibly improve storage capacity in future applications. The research underscores that while bilayer graphene offers superior conductivity, a large surface area, and ultrafast lithium diffusion, it is limited by a reduced lithium storage capacity. This limitation is especially pertinent for dense assemblies of bilayer graphene being considered for battery technologies, which could potentially offer a larger storage capacity than isolated bilayers. The report notes that bilayer graphene provides weaker screening of interionic interactions compared to bulk graphite, leading to strong interactions and repulsion between lithium ions at longer distances, which ultimately restricts the storage capacity of bilayer graphene. Additionally, the study found experimental evidence for highly ordered lithium configurations, referred to as lithium-ion superlattices, which may have implications for electronic transport properties. In related developments, scientists at the Tokyo Institute of Technology have used two lithium-based solid electrolyte chemical compositions to ensure stable ionic movement in millimeter-thick battery electrodes. These solid electrolytes are reportedly more stable than their liquid counterparts. Ryoji Kanno from the institute employed argyrodite-type (Li6PS5Cl) and Tetragonal Li10GeP2S12 (abbreviated as LGPS) to enhance the complexity of the superionic crystals.

Next Story
Real Estate

Jharkhand to Allot 181 Flats via Online Lottery in February

The Jharkhand State Housing Board (JSHB) will allot 181 houses and flats through an online lottery system starting February. The process will be held for the first time entirely online, and interested applicants can apply from February 10 to March 10 via the JSHB's official website. Properties will be available under different categories, with the allotment based on a 90-year lease. Categories include Economically Weaker Section (EWS), Lower Income Group (LIG), Middle Income Group (MIG), and Higher Income Group (HIG), with varying sizes of houses and prices. For EWS, houses will have a super b..

Next Story
Infrastructure Urban

UP Cabinet Okays Municipal Bonds for Infrastructure

In a significant move aimed at bolstering infrastructure development in Uttar Pradesh, the state Cabinet approved the issuance of municipal bonds for the cities of Prayagraj, Varanasi, and Agra. The decision was made during a cabinet meeting chaired by Chief Minister Yogi Adityanath, which took place in the Maha Kumbh Mela area in Prayagraj. The new initiative will see the issuance of municipal bonds, enabling these cities to raise funds from the market for infrastructure projects. For every billion raised through these bonds, the state government will provide an additional Rs 130 million as ..

Next Story
Infrastructure Urban

Haryana Proposes New Policy on Tree Felling

The Haryana government has proposed a new policy on tree felling across non-forest land, which would remove the requirement for approval in urban areas on plots allocated by government bodies for residential, industrial, or infrastructure development. Currently, the forest department’s consent is mandatory for tree felling. The proposed policy seeks to replace all previous directives on tree felling outside forest areas, including those areas notified under Section 3 of the Punjab Land Preservation Act (PLPA), 1900. A committee is set to be formed to finalize the policy and revise compensat..

Hi There!

"Now get regular updates from CW Magazine on WhatsApp!

Join the CW WhatsApp channel for the latest news, industry events, expert insights, and project updates from the construction and infrastructure industry.

Click the link below to join"

+91 81086 03000