CSIR-NIIST Scientists Achieve Breakthrough in Indoor Light Harvesting
POWER & RENEWABLE ENERGY

CSIR-NIIST Scientists Achieve Breakthrough in Indoor Light Harvesting

In a significant technological achievement, scientists at the CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) have established a new efficiency record of 35.6% in indoor light harvesting using dye-sensitised solar cells (DSCs). This breakthrough not only offers a sustainable alternative to single-use primary batteries but also has the potential to mitigate environmental pollution. The details of this technological milestone have been published in the Journal of Materials Chemistry A by the Royal Society of Chemistry.

C Anandharamakrishnan, Director of CSIR-NIIST, emphasised that integrating DSCs into Internet of Things (IoT) systems can provide a sustainable solution by enabling self-powered devices to operate for extended periods without requiring battery replacements. This innovation is expected to reduce environmental pollution associated with the disposal of billions of used batteries annually, making it a significant advancement for consumer electronics and portable devices.

The achievement signifies a noteworthy progress in indoor photovoltaic technology, with DSCs emerging as the leading indoor light-harvesting technology. Their semi-transparent nature, combined with various colours and designs, opens up new possibilities for innovative applications, including integration into glass facades, greenhouses, and architectural installations within indoor spaces.

Led by Dr Suraj Soman, a scientist at the Centre for Sustainable Energy Technologies (C-SET) at CSIR-NIIST, the team employed a novel dual-species copper electrolyte approach in their research. DSCs, developed in the 1990s by Michael Gratzel at EPFL, Switzerland, emulate photosynthesis in plants and are known for their eco-friendly and cost-effective nature, making them the preferred choice among indoor photovoltaic technologies.

The recent advancement involves careful modification of the copper metal centre?s coordination environment, addressing recombination issues, and enhancing performance, especially in indoor conditions. The CSIR-NIIST team successfully demonstrated the technology by creating a self-powered temperature sensor that operated independently under indoor illumination, eliminating the need for batteries.

Dr Narayanan Unni, Head of the Centre for Sustainable Energy Technologies at NIIST, highlighted that powering electronic devices and realising self-powered IoTs through indoor light harvesting would contribute to a greener and more sustainable future by reducing the usage of disposable primary batteries. CSIR-NIIST is actively working on translating this technology into practical applications, developing innovative self-powered prototypes and products, and exploring new applications to significantly reduce dependence on primary batteries. This effort aligns with the goal of reducing the carbon footprint and addressing climate change, as mentioned by Anandharamakrishnan.

In a significant technological achievement, scientists at the CSIR-National Institute for Interdisciplinary Science & Technology (CSIR-NIIST) have established a new efficiency record of 35.6% in indoor light harvesting using dye-sensitised solar cells (DSCs). This breakthrough not only offers a sustainable alternative to single-use primary batteries but also has the potential to mitigate environmental pollution. The details of this technological milestone have been published in the Journal of Materials Chemistry A by the Royal Society of Chemistry. C Anandharamakrishnan, Director of CSIR-NIIST, emphasised that integrating DSCs into Internet of Things (IoT) systems can provide a sustainable solution by enabling self-powered devices to operate for extended periods without requiring battery replacements. This innovation is expected to reduce environmental pollution associated with the disposal of billions of used batteries annually, making it a significant advancement for consumer electronics and portable devices. The achievement signifies a noteworthy progress in indoor photovoltaic technology, with DSCs emerging as the leading indoor light-harvesting technology. Their semi-transparent nature, combined with various colours and designs, opens up new possibilities for innovative applications, including integration into glass facades, greenhouses, and architectural installations within indoor spaces. Led by Dr Suraj Soman, a scientist at the Centre for Sustainable Energy Technologies (C-SET) at CSIR-NIIST, the team employed a novel dual-species copper electrolyte approach in their research. DSCs, developed in the 1990s by Michael Gratzel at EPFL, Switzerland, emulate photosynthesis in plants and are known for their eco-friendly and cost-effective nature, making them the preferred choice among indoor photovoltaic technologies. The recent advancement involves careful modification of the copper metal centre?s coordination environment, addressing recombination issues, and enhancing performance, especially in indoor conditions. The CSIR-NIIST team successfully demonstrated the technology by creating a self-powered temperature sensor that operated independently under indoor illumination, eliminating the need for batteries. Dr Narayanan Unni, Head of the Centre for Sustainable Energy Technologies at NIIST, highlighted that powering electronic devices and realising self-powered IoTs through indoor light harvesting would contribute to a greener and more sustainable future by reducing the usage of disposable primary batteries. CSIR-NIIST is actively working on translating this technology into practical applications, developing innovative self-powered prototypes and products, and exploring new applications to significantly reduce dependence on primary batteries. This effort aligns with the goal of reducing the carbon footprint and addressing climate change, as mentioned by Anandharamakrishnan.

Next Story
Infrastructure Transport

Railway stations in Prayagraj undergo major passenger facility expansion

The Railway Board Chairman and CEO, Satish Kumar, conducted an extensive inspection on Saturday alongside the General Manager of Northern Railway and the officiating General Manager of North Central Railway. Their visit focused on various ongoing projects at multiple stations across the Northern and North Central Railway zones, with particular attention to enhancing facilities for the upcoming Maha Kumbh. During the inspection, Chairman Kumar reviewed the construction of a vital bridge over the River Ganga, specifically between Jhunsi and Prayagraj Rambagh. This bridge is expected to significa..

Next Story
Infrastructure Transport

Madurai-Thoothukudi broad gauge line works under review

The construction of the Madurai-Thoothukudi broad gauge line, which includes the crucial Melmarudur-Tiruparankundram project, is currently under careful review. This update comes from Southern Railway's assistant public information officer, J Kumarasubramanian, following an RTI inquiry made by a concerned citizen, Dayanand Krishnan. The new broad gauge line is projected to cover a total length of 143.5 km, with the initial 18 km stretch between Milavittan and Melmarudur completed and sanctioned by the Commission of Railway Safety on March 8, 2022. While substantial progress has been made on t..

Next Story
Real Estate

DLF expects Rs 26,000 cr from super luxury project in Gurugram

Realty giant DLF is projecting impressive revenue of Rs 26,000 crore from its newly unveiled super-luxury project, The Dahlias, situated in the heart of Gurugram. Ashok Tyagi, the Managing Director of DLF, shared these insights during a recent conference call with market analysts, highlighting the project's potential amidst rising demand for high-end residential properties. The Dahlias project spans an expansive 17 acres and is set to feature approximately 420 ultra-luxury apartments, each boasting a minimum size of 10,300 square feet. This ambitious development has already garnered significan..

Hi There!

"Now get regular updates from CW Magazine on WhatsApp!

Join the CW WhatsApp channel for the latest news, industry events, expert insights, and project updates from the construction and infrastructure industry.

Click the link below to join"

+91 81086 03000