IIT Jodhpur emphasises on cooling power in nuclear power plants safety
POWER & RENEWABLE ENERGY

IIT Jodhpur emphasises on cooling power in nuclear power plants safety

In light of historical nuclear disasters, a team of international researchers led by the Indian Institute of Technology (IIT) Jodhpur has recognised the importance of cooling power sources for the safety of nuclear power plants. They have proposed the use of offshore wind farms as seismically resilient alternative power sources. The researchers demonstrated the viability of this approach by utilising sustainable wind power to enhance the reliability of cooling power at the Madras Atomic Power Station in Chennai.

The proposed methodology, outlined in an article published in the journal Nuclear Engineering and Design, consists of several stages. It begins with estimating the coolant power requirements of nuclear reactors, followed by designing an offshore wind turbine and its associated infrastructure. Subsequently, a seismic safety evaluation is conducted for the chosen offshore wind turbine site, considering various scenario levels.

The team of researchers, which includes experts from the University of Surrey in the UK, Tsinghua University, and the Institute of Engineering Mechanics in China, suggests the implementation of a 15 MW offshore wind farm with three NREL 5 MW turbines supported by monopile foundations in the Kalpakkam area. This setup could serve as an additional emergency backup power source to meet the cooling power needs of existing nuclear power plants.

The monopile foundation of the offshore wind turbines is analysed under anticipated dynamic loading conditions, taking into account soil nonlinearity and seismic liquefaction using advanced numerical models. The results of the nonlinear integrated seismic analyses indicate that the proposed offshore wind turbines exhibit satisfactory seismic performance when comparing the monopile mudline displacements and bending moments.

Dr Pradeep Kumar Dammala, Assistant Professor at the Department of Civil and Infrastructure Engineering, IIT Jodhpur, emphasised the significance of enhancing the safety of nuclear structures in India due to the country's pursuit of nuclear energy development and the presence of seismic and tsunami threats in close proximity. He stated that the suggested approach presented an excellent framework for evaluating the seismic resilience of nuclear power plants and integrating wind energy sources during interconnected events like earthquakes and tsunamis.

India has seven Nuclear Power Plants, with five situated in seismically active zones III and IV, and three located in coastal areas susceptible to hazards such as tsunamis and cyclones. The Madras Atomic Power Station in Kalpakkam, which houses two 220 MW FBRs, serves as an example of a nuclear power plant in a vulnerable area.

Also Read
Government of Himachal Pradesh invites tenders for Civil Works
PVVNL invites bids for electrical works in Moradabad Zone


In light of historical nuclear disasters, a team of international researchers led by the Indian Institute of Technology (IIT) Jodhpur has recognised the importance of cooling power sources for the safety of nuclear power plants. They have proposed the use of offshore wind farms as seismically resilient alternative power sources. The researchers demonstrated the viability of this approach by utilising sustainable wind power to enhance the reliability of cooling power at the Madras Atomic Power Station in Chennai. The proposed methodology, outlined in an article published in the journal Nuclear Engineering and Design, consists of several stages. It begins with estimating the coolant power requirements of nuclear reactors, followed by designing an offshore wind turbine and its associated infrastructure. Subsequently, a seismic safety evaluation is conducted for the chosen offshore wind turbine site, considering various scenario levels. The team of researchers, which includes experts from the University of Surrey in the UK, Tsinghua University, and the Institute of Engineering Mechanics in China, suggests the implementation of a 15 MW offshore wind farm with three NREL 5 MW turbines supported by monopile foundations in the Kalpakkam area. This setup could serve as an additional emergency backup power source to meet the cooling power needs of existing nuclear power plants. The monopile foundation of the offshore wind turbines is analysed under anticipated dynamic loading conditions, taking into account soil nonlinearity and seismic liquefaction using advanced numerical models. The results of the nonlinear integrated seismic analyses indicate that the proposed offshore wind turbines exhibit satisfactory seismic performance when comparing the monopile mudline displacements and bending moments. Dr Pradeep Kumar Dammala, Assistant Professor at the Department of Civil and Infrastructure Engineering, IIT Jodhpur, emphasised the significance of enhancing the safety of nuclear structures in India due to the country's pursuit of nuclear energy development and the presence of seismic and tsunami threats in close proximity. He stated that the suggested approach presented an excellent framework for evaluating the seismic resilience of nuclear power plants and integrating wind energy sources during interconnected events like earthquakes and tsunamis. India has seven Nuclear Power Plants, with five situated in seismically active zones III and IV, and three located in coastal areas susceptible to hazards such as tsunamis and cyclones. The Madras Atomic Power Station in Kalpakkam, which houses two 220 MW FBRs, serves as an example of a nuclear power plant in a vulnerable area. Also Read Government of Himachal Pradesh invites tenders for Civil WorksPVVNL invites bids for electrical works in Moradabad Zone

Next Story
Real Estate

Thermocool Home Appliances Invests Rs 300 million in New Ghaziabad Plant

Thermocool Home Appliances, a leading UP-based home and kitchen appliances brand, has inaugurated a new manufacturing facility in Ghaziabad, reinforcing its growth, innovation, and sustainability commitments.Spanning 25,000 square meters, the plant features advanced automation, energy-efficient systems, and employee welfare facilities. With an initial production capacity of 1,800-2,200 units/day, the company plans to scale up to 3,000-4,000 units/day within six months and expand the facility by 50 percent over the next two years.The Rs 300 million investment will cater to rising demand across ..

Next Story
Building Material

Parallel debuts fluted glass collection, redefining luxury interiors

Parallel has launched an exquisite collection of tinted, extra-clear, and designer fluted glass, introducing a new dimension to contemporary interiors.Fluted glass, known for its vertical striations, diffuses light while sculpting silhouettes with a refined aesthetic. Parallel’s range includes smoky tinted variants, pristine extra-clear options, and metallic-infused designs, ideal for partitions, doors, and wall treatments that balance exclusivity with openness.Emphasising sensory design, the collection enhances spaces by creating dynamic light interactions. Crafted for luxury residences, ho..

Next Story
Building Material

Nivasa unveils luxury lighting collection blending artistry and innovation

Nivasa, a leader in luxury furniture design, has launched an exquisite lighting collection inspired by nature, combining sculptural aesthetics with masterful craftsmanship.Crafted from premium 304-grade stainless steel, each piece showcases a refined interplay of organic and sleek forms, offering a range of finishes for bespoke customization. Designed for grand foyers, intimate spaces, and sophisticated interiors, the collection merges contemporary finesse with global design standards.Collection highlights include:Circular Drummer’s Chandelier – A geometric yet fluid design in a light gold..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?