WACKER High-Performance Binders Help Reduce Carbon Footprint
Cement

WACKER High-Performance Binders Help Reduce Carbon Footprint

Manufacturers of dry-mix mortars – in particular tile adhesives – are currently facing the challenge of adapting their formulations, which are based on Portland cement (CEM I). Why? With the aim of reducing CO2 emissions, the cement industry is increasingly switching its production to Portland composite cements (CEM II). With a wide range of VINNAPAS® dispersible polymer powders that ensure high-performance formulations of dry-mix mortars, even with CEM II cements, WACKER helps dry-mix mortar manufacturers achieve this transition. At the 2025 European Coatings Show, which will be held in Nuremberg, Germany, from March 25 to 27, WACKER will be presenting a portfolio including polymer dispersions, dispersible polymer powders and solid resins – products that are used in numerous industries to enhance product properties.

The cement industry is responsible for around 8% of the world’s total CO2 emissions. Considered a particularly energy and emissions-intensive sector, the cement industry has taken various measures aimed at reducing its CO2 emissions for the benefit of the climate. Some of these measures involve changing the product portfolio to include cements with a lower proportion of Portland clinker. (Portland clinker is the heated part of the cement that is responsible for the setting and hardening of the cement when water is added.) This trend is likely to continue, especially as many industrialized nations have set themselves the goal of producing climate-neutral cement from 2050. In several European countries, among them the Czech Republic, manufacturers have already removed CEM I from their portfolio.

In terms of volume, cement, alongside sand, is the most important component of dry-mix mortars and, consequently, tile adhesives. It serves as a binding agent. CEM I is used in many commercially available tile adhesives. The cement industry is, however, increasing its production of CEM II and other types of low-emission cements that have a lower carbon footprint. As CEM I will at some point be taken off the market, tile adhesive manufacturers face the task of replacing Portland cement in their formulations with CEM II or, if necessary, other types of cements. In view of this development, however, an important question needs to be asked as to whether and to what extent the properties of tile adhesives change if CEM I is replaced by CEM II.

Substituting CEM I with CEM II in tile adhesives WACKER has investigated the extent to which the substitution of CEM I with CEM II will impact the properties of tile adhesives. A tile adhesive classified as C2TE in accordance with European standard EN 12004 (C = cementitious adhesive, 2 = high-strength adhesive, T = high resistance to vertical slip, E = open time of at least 30 minutes) served as a reference sample. In a series of tests, the CEM I content in the reference sample was replaced by four different CEM II formulations. WACKER experts examined if the new formulations are able to fulfill the requirements specified for a C2TE tile adhesive. The test results revealed that most of the properties remained unchanged. As in the case of the reference sample, density and workability, resistance to vertical slip, and wetting capability meet the requirements specified in the standard.

Using CEM II instead of CEM I does, however, have a negative impact on two properties: the tensile adhesion strength following immersion in water and early strength. In contrast to the reference sample, all the CEM II tile adhesive formulations tested had a lower initial tensile adhesion strength and a lower tensile adhesion strength following storage at elevated temperatures and under freeze-thaw conditions. What is crucial, however, is the fact that the tile adhesives formulated with CEM II have such a low tensile adhesion strength following immersion in water that they fail to meet the C2 requirement of 1 N/mm2 as specified in the standard. Tensile adhesion strength of CEM II tile adhesives can be improved by using VINNAPAS© dispersible polymer powders to modify the formulation It is possible to improve the unsatisfactory tensile adhesion strength of CEM II tile adhesives following immersion in water. The key to this is the use of polymer-modified adhesives. Replacing a standard vinyl acetate-ethylene copolymer (VAE) with special terpolymers in which water-repellent monomers are incorporated into the VAE backbone improves the tensile adhesion strength following immersion in water, whereby the requirements specified in the standard are met. In formulations with VINNAPAS® 8118 E, 8620 E or 7220 E, which contain such water-repellent monomers, the tensile adhesion strength following immersion in water is significantly improved and the requirements specified in the standard are thus met.

Conclusion: CEM II cements are suitable as binding agents for tile adhesives. In order to achieve similar performance characteristics as CEM I cements, modifications to the composition of the relevant adhesive are recommended and, in some cases, may even be necessary. To successfully progress in the transition from CEM I to CEM II cements and, at the same time, achieve an improved carbon footprint for tile adhesives, manufacturers of dry-mix mortars can rely on WACKER and its range of VINNAPAS® E grade dispersible polymer powders.

Manufacturers of dry-mix mortars – in particular tile adhesives – are currently facing the challenge of adapting their formulations, which are based on Portland cement (CEM I). Why? With the aim of reducing CO2 emissions, the cement industry is increasingly switching its production to Portland composite cements (CEM II). With a wide range of VINNAPAS® dispersible polymer powders that ensure high-performance formulations of dry-mix mortars, even with CEM II cements, WACKER helps dry-mix mortar manufacturers achieve this transition. At the 2025 European Coatings Show, which will be held in Nuremberg, Germany, from March 25 to 27, WACKER will be presenting a portfolio including polymer dispersions, dispersible polymer powders and solid resins – products that are used in numerous industries to enhance product properties. The cement industry is responsible for around 8% of the world’s total CO2 emissions. Considered a particularly energy and emissions-intensive sector, the cement industry has taken various measures aimed at reducing its CO2 emissions for the benefit of the climate. Some of these measures involve changing the product portfolio to include cements with a lower proportion of Portland clinker. (Portland clinker is the heated part of the cement that is responsible for the setting and hardening of the cement when water is added.) This trend is likely to continue, especially as many industrialized nations have set themselves the goal of producing climate-neutral cement from 2050. In several European countries, among them the Czech Republic, manufacturers have already removed CEM I from their portfolio. In terms of volume, cement, alongside sand, is the most important component of dry-mix mortars and, consequently, tile adhesives. It serves as a binding agent. CEM I is used in many commercially available tile adhesives. The cement industry is, however, increasing its production of CEM II and other types of low-emission cements that have a lower carbon footprint. As CEM I will at some point be taken off the market, tile adhesive manufacturers face the task of replacing Portland cement in their formulations with CEM II or, if necessary, other types of cements. In view of this development, however, an important question needs to be asked as to whether and to what extent the properties of tile adhesives change if CEM I is replaced by CEM II. Substituting CEM I with CEM II in tile adhesives WACKER has investigated the extent to which the substitution of CEM I with CEM II will impact the properties of tile adhesives. A tile adhesive classified as C2TE in accordance with European standard EN 12004 (C = cementitious adhesive, 2 = high-strength adhesive, T = high resistance to vertical slip, E = open time of at least 30 minutes) served as a reference sample. In a series of tests, the CEM I content in the reference sample was replaced by four different CEM II formulations. WACKER experts examined if the new formulations are able to fulfill the requirements specified for a C2TE tile adhesive. The test results revealed that most of the properties remained unchanged. As in the case of the reference sample, density and workability, resistance to vertical slip, and wetting capability meet the requirements specified in the standard. Using CEM II instead of CEM I does, however, have a negative impact on two properties: the tensile adhesion strength following immersion in water and early strength. In contrast to the reference sample, all the CEM II tile adhesive formulations tested had a lower initial tensile adhesion strength and a lower tensile adhesion strength following storage at elevated temperatures and under freeze-thaw conditions. What is crucial, however, is the fact that the tile adhesives formulated with CEM II have such a low tensile adhesion strength following immersion in water that they fail to meet the C2 requirement of 1 N/mm2 as specified in the standard. Tensile adhesion strength of CEM II tile adhesives can be improved by using VINNAPAS© dispersible polymer powders to modify the formulation It is possible to improve the unsatisfactory tensile adhesion strength of CEM II tile adhesives following immersion in water. The key to this is the use of polymer-modified adhesives. Replacing a standard vinyl acetate-ethylene copolymer (VAE) with special terpolymers in which water-repellent monomers are incorporated into the VAE backbone improves the tensile adhesion strength following immersion in water, whereby the requirements specified in the standard are met. In formulations with VINNAPAS® 8118 E, 8620 E or 7220 E, which contain such water-repellent monomers, the tensile adhesion strength following immersion in water is significantly improved and the requirements specified in the standard are thus met. Conclusion: CEM II cements are suitable as binding agents for tile adhesives. In order to achieve similar performance characteristics as CEM I cements, modifications to the composition of the relevant adhesive are recommended and, in some cases, may even be necessary. To successfully progress in the transition from CEM I to CEM II cements and, at the same time, achieve an improved carbon footprint for tile adhesives, manufacturers of dry-mix mortars can rely on WACKER and its range of VINNAPAS® E grade dispersible polymer powders.

Next Story
Resources

Office Fit-Out Costs Rise in India amid Demand for Premium Workspaces

Office fit-out costs in India continued to rise in 2024, with Mumbai leading at US$73 per sq. ft., followed by Delhi at US$ 69 per sq. ft., according to Cushman & Wakefield’s latest Fit-Out Cost Guide. Bengaluru follows at US$67 per sq. ft., while Ahmedabad, Chennai, Hyderabad, Kolkata, and Pune stand at US$ 65 per sq. ft.Despite a three per cent year-on-year increase, India remains one of the most cost-effective office fit-out destinations in the Asia Pacific (APAC) region. The report notes a shift towards premium, tech-enabled, and sustainable workspaces as companies invest more per sq..

Next Story
Equipment

TKIL Industries’ Hyderabad Plant Earns Five-Star Safety Grading

TKIL Industries has achieved a Five-Star grading in the British Safety Council's Occupational Health and Safety Audit for its Hyderabad manufacturing plant. This follows a similar recognition for its Pimpri facility, reinforcing TKIL’s commitment to safety, risk management, and operational excellence.The Hyderabad plant, operational since 1988, manufactures equipment for sugar, mining, cement, and power industries and employs 720 workers. The audit assessed leadership, risk management, and organisational safety culture, covering 50 key health and safety components.Mike Robinson, CEO, British..

Next Story
Real Estate

Bigdome Infra Acquires Prime Land in Kamba for Rs 1.3 bilion

Bigdome Infra has acquired 68.91 hectares of land in Kamba, Kalyan-Dombivli, for Rs 1.29 billion (bn), according to property registration data reviewed by Square Yards. The purchase was made through two transactions from multiple owners and was registered between February and March 2025. Kamba, an emerging locality in Maharashtra, offers connectivity to Kalyan, Ambernath, and Thane via National Highway 61 (NH 61) and nearby railway stations. The total stamp duty paid for the transaction was Rs 79.5 million. Registered on February 28, 2024, Bigdome Infra is a real estate-focused compa..

Advertisement

Advertisement

Subscribe to Our Newsletter

Get daily newsletters around different themes from Construction world.

STAY CONNECTED

Advertisement

Advertisement

Advertisement

Advertisement

Talk to us?