Nanocomposite Achieves Pollutant Degradation Success
The team, led by Dr. Debaraj Mukherjee, focused on addressing water pollution caused by harmful organic dyes commonly discharged from textile and dyeing industries. These dyes, if not treated properly, pose severe environmental and health risks. The newly developed nanocomposite offers a promising solution to this problem, leveraging the photocatalytic properties of ZnO and the high surface area and electron mobility of rGO.
During testing, the nanocomposite was able to degrade methylene blue, a common organic dye pollutant, with a high degree of efficiency. The process involves the generation of reactive oxygen species (ROS) when the nanocomposite is exposed to sunlight. These ROS then attack and break down the dye molecules into less harmful substances.
This development is significant because it presents an eco-friendly and cost-effective method for wastewater treatment. Traditional methods of treating dye-laden wastewater are often energy-intensive and can generate secondary pollutants. In contrast, the IASST nanocomposite utilizes sunlight, making it a sustainable option for large-scale applications.
The research has garnered attention not only for its high degradation efficiency but also for its potential scalability and practical implementation. The team is now looking to further optimize the nanocomposite for different pollutants and explore its commercial viability. This innovation could play a crucial role in mitigating industrial pollution and safeguarding water resources.