Breakthrough in Thermionic Emission with Metal or Semiconductor Superlattices


A groundbreaking breakthrough in thermionic emission—the process in which electrons escape from a material’s surface due to thermal energy—could transform next-generation electronic and energy conversion technologies.

Thermionic emission is a fundamental principle behind vacuum electronics, thermoelectric devices, and energy harvesting systems. However, its practical applications have long been constrained by material limitations, high operational temperatures, and inefficient charge transport.

To overcome these challenges, Prof. Bivas Saha and his team at the Jawaharlal Nehru Centre for Advanced Scientific Research (JNCASR), Bangalore—an autonomous institute under the Department of Science & Technology (DST), Government of India—have developed engineered superlattices comprising single-crystalline elemental metal/compound semiconductor structures. These defect-free, quantum-engineered metamaterials leverage interfacial engineering to significantly enhance electron transport and emission efficiency.

Their pioneering research, recently published in Advanced Materials, presents the first-ever demonstration of controlled thermionic emission using engineered superlattices, unlocking potential applications in thermoelectric energy conversion, high-power vacuum electronics, and advanced semiconductor technology.

National & Global Impact This DST-supported breakthrough aligns with India’s national mission to advance semiconductor research, high-tech materials, and technological self-reliance (Atmanirbhar Bharat). By placing India at the forefront of next-generation nanotechnology and material science innovations, this development strengthens the country’s position in global semiconductor and energy research.

Moving forward, Prof. Saha’s team aims to refine superlattice architectures for industrial-scale applications, particularly in solid-state energy harvesting and high-temperature electronics. As the demand for energy-efficient, high-performance electronic systems continues to grow worldwide, this innovation could serve as a cornerstone for future technological advancements.

Related Stories

Radiative Paint reduces electricity consumption for cooling buildings

Researchers have introduced a ground-breaking radiative cooling paint

Master plan to expands stormwater drain network will be drafted

Many of Yelahanka's lakes were overflowing due to the heavy rains